ORGANIC LETTERS

2008 Vol. 10, No. 16 3485-3488

A Versatile Cyclodehydration Reaction for the Synthesis of Isoquinoline and β -Carboline Derivatives

Mohammad Movassaghi* and Matthew D. Hill

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 movassag@mit.edu

Received June 4, 2008

ABSTRACT

The direct conversion of various amides to isoquinoline and β -carboline derivatives via mild electrophilic amide activation, with trifluoromethanesulfonic anhydride in the presence of 2-chloropyridine, is described. Low-temperature amide activation followed by cyclodehydration upon warming provides the desired products with short overall reaction times. The successful use of nonactivated and halogenated phenethylene derived amides, N-vinyl amides, and optically active substrates is noteworthy.

The venerable Bischler–Napieralski reaction offers an important strategy for the synthesis of various azaheterocycles. ^{1,2} Isoquinolines and β -carbolines, including their reduced derivatives, can be found as substructures in many important natural products, pharmaceuticals, and other fine chemicals. ³ We have reported the syntheses of pyridine ^{4a} and pyrimidine ^{4b} derivatives via the intermolecular conden-

various nucleophiles. Herein we report mild reaction conditions for the Bischler-Napieralski based synthesis of isoquinoline and β -carboline derivatives from readily available amides.

During our studies concerning the syntheses of pyridines

sation of readily available N-vinyl- and N-arylamides⁵ with

During our studies concerning the syntheses of pyridines and quinolines via an intermolecular condensation reaction, we observed a competitive intramolecular cyclization reaction in a single case where a Morgan–Walls⁶ cyclization pathway was possible. *N*-Phenethylbenzamide (1, Table 1) was used to further investigate this intramolecular condensation reaction. Consistent with our observations on amide activation for the intermolecular addition of σ - or π -nucleophiles,⁴ the use of trifluoromethanesulfonic anhydride (Tf₂O)⁷ and 2-chloropyridine⁸ (2-ClPyr) as the base additive were found to be

^{(1) (}a) Bischler, A.; Napieralski, B. Ber. 1893, 26, 1903. (b) Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 74.

⁽²⁾ For representative reports, see: (a) Tóth, J.; Nedves, A.; Dancsó, A.; Blaskó, G.; Töke, L; Nyerges, M. Synthesis 2007, 1003. (b) Spaggiari, A.; Davoli, P.; Blaszczak, L. C.; Prati, F. Synlett 2005, 661. (c) Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.; Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W. J. Chem. Soc., Chem. Commun. 1995, 2551. (d) Larsen, R. D.; Reamer, R. A.; Corley, E. G.; Davis, P.; Grabowski, E. J. J.; Reider, P. J.; Shinkai, I. J. Org. Chem. 1991, 56, 6034. (e) Hendrickson, J. B.; Schwartzman, S. M. Tetrahedron Lett. 1975, 16, 277.

⁽³⁾ For reviews on isoquinolines and their reduced derivatives, see: (a) Jones, G. In *Comprehensive Heterocyclic Chemistry II*; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., McKillop, A., Eds.; Pergamon: Oxford, 1996; Vol. 5, p 167. (b) Bentley, K. W. *Nat. Prod. Rep.* **2006**, *23*, 444. (c) Kartsev, V. G. *Med. Chem. Res.* **2004**, *13*, 325. (d) Chrzanowska, M.; Rozwadowska, M. D. *Chem. Rev.* **2004**, *104*, 3341. (e) Joule, J. A.; Mills, K. In *Heterocyclic Chemistry*, 4th ed.; Blackwell Science Ltd.: Cambridge MA, 2000; p 121. (f) Rozwadowska, M. D. *Heterocycles* **1994**, *39*, 903. For a review on β -carbolines and their reduced derivatives, see: (g) Love, B. E. *Org. Prep. Proced. Int.* **1996**, *28*, 3.

^{(4) (}a) Movassaghi, M.; Hill, M. D. *J. Am. Chem. Soc.* **2006**, *128*, 14254. (b) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. *J. Am. Chem. Soc.* **2007**, *129*, 10096.

⁽⁵⁾ For recent advances in synthesis of *N*-vinyl- and *N*-arylamides, see:
(a) Muci, A. R.; Buchwald, S. L. *Top. Curr. Chem.* **2002**, *219*, 131. (b) Hartwig, J. F. In *Handbook of Organopalladium Chemistry for Organic Synthesis*; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; p 1051. (c) Beletskaya, I. P.; Cheprakov, A. V. *Coord. Chem. Rev.* **2004**, *248*, 2337. (d) Dehli, J. R.; Legros, J.; Bolm, C. *Chem. Commun.* **2005**, 973.

^{(6) (}a) Morgan, G. T.; Walls, L. P. *J. Chem. Soc.* **1931**, 2447. (b) Shabashov, D.; Daugulis, O. *J. Org. Chem.* **2007**, 72, 7720. (c) Hutchinson, I.; Stevens, M. F. G. *Org. Biomol. Chem.* **2007**, 5, 114.

^{(7) (}a) For an elegant prior report on amide activation, see: Charette, A. B.; Grenon, M. Can. J. Chem. **2001**, 79, 1694. (b) Review: Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. *Tetrahedron* **2000**, *56*, 3077.

Table 1. Selection of Base Additive^a

entry	base additive	equiv	isolated yield (%)
1	$\mathrm{Et_{3}N}$	1.2	18
2	pyridine	1.2	65
3	ethyl nicotinate	1.2	51
4	2-bromopyridine	1.2	74
5	2-fluoropyridine	1.2	90
6	3-chloropyridine	1.2	79
7	2-chloropyridine	1.2	95
8	2-chloropyridine	0	43
9	2-chloropyridine	2.0	91

^a Reaction conditions: Tf₂O (1.1 equiv), CH₂Cl₂, 45 °C, 2 h.

optimal for a mild cyclodehydration reaction to provide the desired 3,4-dihydroisoquinoline **2** in 95% yield (Table 1, entry 7). The reaction was found to be less sensitive to superstoichiometric quantities of 2-ClPyr as compared to its absence (compare entries 7–9, Table 1), allowing the inclusion of excess base additive for Brønsted acid-sensitive substrates. Electrophilic amide activation followed by intramolecular π -nucleophilic cyclization and subsequent deprotonation directly provides the desired product **5** (Scheme 1).

A wide range of *N*-phenethylamide derivatives were found to readily provide the corresponding 3,4-dihydroisoquinoline

Scheme 1. Intramolecular Dehydrative Cyclization

products (Figure 1, 2, 6-14). Alkoxy and unsubstituted N-phenethylamides provided the desired dihydroisoguinoline products at ambient temperature or with mild heating. The conversion of recalcitrant substrates was found to be optimal via short (5 min) microwave irradiation.¹¹ For example, deactivated halogenated N-phenethylamides did not cyclize at ambient temperature but provided the desired 3,4dihydroisoquinolines with microwave irradiation (Figure 1, 9 and 10). The formation of the phenylalaninol-derived dihydroisoguinoline 14 was noted to occur with no loss in optical activity. 12 Significantly, sensitive N-vinylamides 13 were used as substrates in this chemistry to directly provide isoquinoline derivatives (Figure 1, 15–18). While (E)-Nstyrylcyclohexanecarboxamide did not provide isoquinoline 15, (Z)-N-styrylcyclohexanecarboxamide was converted to the desired isoquinoline 15 in moderate yield (Figure 1). It should be noted that this substrate was sensitive (vide infra) to decomposition/polymerization following electrophilic amide activation. Tri- and tetrasubstituted enamides proved

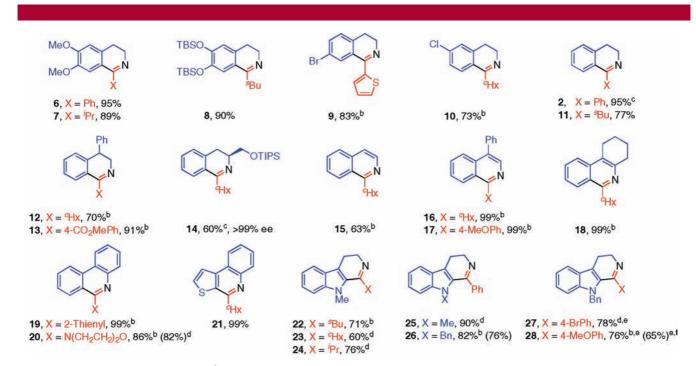


Figure 1. Synthesis of isoquinoline and *β*-carboline derivatives. ^aAverage of two experiments. Uniform reaction conditions unless otherwise noted: Tf₂O (1.1 equiv), 2-ClPyr (1.2 equiv), CH₂Cl₂, $-78 \rightarrow 23$ °C, 1 h. ^b $-78 \rightarrow 140$ °C, 5 min. ^c $-78 \rightarrow 45$ °C, 2 h. ^d $-78 \rightarrow 23$ °C, 2 h. ^eTf₂O (1.0 equiv). ^f $-78 \rightarrow 23$ °C, 6 h.

3486 Org. Lett., Vol. 10, No. 16, 2008

to be excellent substrates for this chemistry and efficiently gave the corresponding azaheterocycles (Figure 1, 16-18). o-Arylaniline-derived amides afforded the desired fused tricyclic azaheterocycles, reminiscent of Morgan—Walls cyclization products, in good yield (Figure 1, 19-21). Additionally, the use of tryptamine-derived substrates, optimally N-alkyl derivatives, gave the corresponding 3,4-dihydro- β -carbolines (Figure 1, 22-28).

Highly deactivated substrates such as N-(4-nitrophenethyl)cyclohexanecarboxamide or N-(4-(trifluoromethyl)phenethyl)benzamide did not provide the corresponding dihydroisoquinolines. 14 This is likely due to a more rapid rate of elimination/decomposition upon activation as compared to the desired cyclodehydration reaction. Tryptaminederived amides bearing a sulfonyl group on the indolyl nitrogen were not substrates for this chemistry, and unsubstituted indole derivatives led to rapid indolyl nitrogen N-sulfonvlation of the starting material under the reaction conditions. It should be noted that in some cases minor side products resulting from oxidation (vide infra) of 3,4-dihydro- β -carboline were observed. ¹⁵ Additionally, using the phenylalanine derivative 29 as a substrate under the standard reaction conditions competitively gave the oxazole 30 in 84% yield (eq 1).16,17

When 2-vinylaniline-derived amide **31** was exposed to the standard cyclodehydration reaction conditions described above, a highly efficient condensation reaction ensued to afford 2-phenylquinoline (**32**, eq 2) in 99% isolated yield.

The direct comparison of the herein described condensation reaction with related protocols further highlights the advantages offered by this chemistry (Table 2).² The synthesis of 3,4-dihydroisoquinoline **2**, isoquinoline **15**, and

Table 2. Direct Comparison of Condensation Reaction Conditions

	reaction conditions				
product	Tf ₂ O (1.2 equiv) 2-CIPyr (<i>This work</i>) ^a	POCI ₃ (3.0 equiv) (<i>Ref 2a</i>) ^b	Oxalyl Chloride (1.1 equiv) FeCl ₃ (Ref 2d) ^c	Tf ₂ O (5.0 equiv) DMAP (<i>Ref 2c</i>) ^d	
2 Ph	95%	23%	15%	71%	
N 15 9Hx	63%	0%	9%	42%	
20 N(CH ₂)	86%	10%	0%	63%	

 a See Figure 1 for reaction conditions. b POCl₃ (3.0 equiv), xylenes, 150 °C, 3 h. c (1) Oxalyl chloride (1.1 equiv); FeCl₃ (1.2 equiv), CH₂Cl₂, 23 °C, 12 h. (2) MeOH-H₂SO₄ (19:1), 65 °C, 1 h. d Tf₂O (5.0 equiv), DMAP (3.0 equiv), CH₂Cl₂, 23 °C, 16 h.

phenanthridine **20** is illustrative. Synthesis of 3,4-dihydroisoquinoline **2** was found to be most efficient using the conditions described here as compared to other reported condensation reaction conditions (Table 2). Sensitive substrates, such as the acid-sensitive (*Z*)-*N*-styrylcyclohexanecarboxamide, were found to be incompatible with the broadly used conditions involving phosphorus oxychloride (POCl₃) in conjunction with heating. ^{2a} Similarly, the use of reaction conditions employing oxalyl chloride and iron trichloride did not provide the desired phenanthridine **20** from the corresponding urea substrate. ^{2d}

While in all three cases (Table 2) the use of superstoichiometric Tf_2O in conjunction with 4-(dimethylamino)-pyridine (DMAP) provided the desired product, ^{2c} the competing oxidation reaction in more sensitive substrates is a potential complication. For example, using the herein described conditions, electrophilic activation of amide **33** (eq 3, 97% ee) afforded the desired optically active 3,4-dihydroisoquinoline **34** in 87% yield and 90% ee without undesired oxidation to the corresponding isoquinoline. ¹⁸ However, electrophilic activation of amide **33** using the

Org. Lett., Vol. 10, No. 16, 2008

^{(8) (}a) Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J. Am. Chem. Soc. **1997**, 119, 6072. (b) Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. **2000**, 122, 4269.

⁽⁹⁾ The inhibitory effect of excess 2-ClPyr is more pronounced when using weak σ -nucleophiles (i.e., nitriles, see ref 4a) as compared to stronger nucleophiles (i.e., ynamines, see ref 4b).

⁽¹⁰⁾ Electrophilic activation of *N*-alkylamides may lead to a transient highly electrophilic nitrilium ion (or a pyridinium adduct) that is trapped by the arene ring.

⁽¹¹⁾ Amide activation at ambient temperature under standard conditions generally led to the desired product; however, reaction times were often significantly shortened and isolated yields often increased upon heating.

⁽¹²⁾ See the Supporting Information for details.

⁽¹³⁾ For representative preparation of enamides, see: Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. *Org. Lett.* **2003**, *5*, 3667, and ref 5.

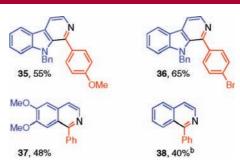
⁽¹⁴⁾ The use of *N*-(4-nitrophenethyl)cyclohexanecarboxamide as substrate provided 1-nitro-4-vinylbenzene as the major product.

⁽¹⁵⁾ For example, **27** and **28** were isolated along with **36** (12%, Figure 2) and **35** (6%, Figure 2), respectively. Additionally, minor *N*-trifluoromethanesulfonylated spirocyclic byproducts were detected.

⁽¹⁶⁾ For competitive oxazole formation under the Bischler—Napieralski reaction conditions, see: Liu, Z. Z.; Tang, Y. F.; Chen, S. Z. *Chin. Chem. Lett.* **2001**, *12*, 947.

⁽¹⁷⁾ While the desired 3,4-dihydroisoquinoline **14** (Figure 1) was prepared from the corresponding *O*-triisopropylsilyl phenylalaninol derived amide, the use of the nonsilylated substrate (*S*)-*N*-(1-hydroxy-3-phenyl-propan-2-yl)cyclohexanecarboxamide led to competitive oxazoline formation. For a related report, see: Whelligan, D. K.; Bolm, C. *J. Org. Chem.* **2006**, *71*, 4609.

⁽¹⁸⁾ Epimerization of 3,4-dihydroisoquinoline **34** can occur within 1 h at room temperature in CH_2Cl_2 (0.3 M) or when stored neat, highlighting the sensitivity of the product.


reported reaction conditions^{2c} employing excess Tf₂O-DMAP gave the desired product **34** in 31% yield, and with only 63% ee, in addition to 26% yield of the corresponding isoquinoline derivative due to oxidation of **34**. Additionally, activation of amide **33** via the typical condensation reaction conditions employing POCl₃ failed to provide the desired product **34** due to competitive decomposition.

MeO
$$\frac{\text{Tf}_2\text{O}, 2\text{-CIPyr}}{\text{CH}_2\text{Cl}_2, 65 \text{ min}} \frac{\text{MeO}}{\text{N}}$$
 (3) $\frac{\text{TBSO}^{\text{V}} \text{Ph}}{\text{Ph}}$ 33, 97% ee $\frac{87\%}{\text{N}}$ 34, 90% ee

As mentioned the 3,4-dihydro- β -carboline condensation products are subject to oxidation with Tf₂O, affording the corresponding β -carbolines. ^{15,19} In the case of 3,4-dihydro-isoquinoline **34** this was a significant complication when excess Tf₂O was used (vide supra). Indeed, exposure of azaheterocycles **2**, **6**, and **27–28** to Tf₂O and 2-ClPyr resulted in the corresponding oxidation products (Figure 2). Electron-rich dihydro- β -carbolines are more sensitive to this oxidation reaction as compared to dihydroisoquinolines (Figure 2). For comparison, while oxidation of 3,4-dihydroisoquinoline **2** to isoquinoline **38** required excess reagents and heating to 140 °C, the oxidation of 3,4-dihydro- β -carboline **27** at 23 °C gave β -carboline **36** in 65% yield within 2 h (Figure 2).

The chemistry described herein provides an efficient modified Bischler-Napieralski cyclodehydration reaction to

with recovered starting material (8%, 30%, and 10%, respectively).

Figure 2. Tf₂O-2-ClPyr-promoted oxidation of 3,4-dihydro- β -carbolines and 3,4-dihydroisoquinolines. ^aReaction conditions: Tf₂O (1.1 equiv), 2-ClPyr (1.2 equiv), CH₂Cl₂, $-78 \rightarrow 23$ °C, 2 h. ^bTf₂O (2.1 equiv), 2-ClPyr (2.2 equiv), CH₂Cl₂, $-78 \rightarrow 140$ °C, 5 min.

access isoquinolines, β -carbolines, and their 3,4-dihydro derivatives. The successful use of unactivated, halogenated N-phenethylamides, sensitive N-vinylamides, and optically active substrates is noteworthy. The direct comparison of this chemistry with existing methods as shown in Table 2 and the observations discussed regarding epimerization and oxidation challenges in the context of substrate 33 highlight the advantages offered by this methodology.

Acknowledgment. M.M. is a Beckman Young Investigator and an Alfred P. Sloan research fellow. M.D.H. acknowledges an Amgen graduate fellowship. We acknowledge partial financial support by NIH-NIGMS (GM074825), NSF (547905), AstraZeneca, Amgen, Boehringer-Ingelheim, Glaxo-SmithKline, Lilly, and Merck.

Supporting Information Available: Experimental procedures and spectroscopic data for 2, 6–28, 30, 32, and 34–38. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801264U

3488 Org. Lett., Vol. 10, No. 16, 2008

⁽¹⁹⁾ For related oxidation reactions, see: (a) Spath, E.; Lederer, E. *Chem. Ber.* **1930**, 63B, 120. (b) Hufford, C. D.; Sharma, A. S.; Oguntimein, B. O. *J. Pharm. Sci.* **1980**, 69, 1180. (c) McMahon, R. M.; Thornber, C. W.; Ruchirawat, S. *J. Chem. Soc., Perkin Trans. I* **1982**, 2163. (d) Hilger, C. S.; Fugmann, B.; Steglich, W. *Tetrahedron Lett.* **1985**, 26, 5975. (e) Andreu, I.; Cabedo, N.; Atassi, G.; Pierre, A.; Caignard, D. H.; Renard, P.; Cortesa, D.; Bermejoa, A. *Tetrahedron Lett.* **2002**, 43, 757, and references therein. (20) Using the conditions described in Figure 2, 3,4-dihydro- β -carboline **28** was completely converted to product **35**, whereas oxidation of azaheterocycles **2**, **6**, and **27** gave the corresponding products (Figure 2) along